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A minimum mean-square-error principle is used to define optimality of rules
appropriate for the estimation of linear functionals of certain nonnegative
functions. It is shown that, just as in the usual linear estimation problem where
nonnegativity is not a constraint, limiting forms of these optimal rules are "best"
in the sense of Sardo

I. INTRODUCTION

Let {xk ; k = 1,2,... , m} be an ordered set of distinct, real abscissas,j(-),
a member of a function space F, to be defined more precisely later, and L,
a linear functional. We shall be concerned with estimation rules of the form

m

L Wd(Xk) ,...., Lf
k~l

and

m

L vd2(X lc ) ,...., L/2,
k~l

(I)

(2)

particularly with a view to selecting sets of weights {Wlc ; k = I, 2, ... , m)
and {Vic; k = I, 2, ... , m} so as to optimize their accuracy (in a sense to be
defined) over F.

Rules of type (1) are familiar in the context of numerical interpolation,
quadrature, etc. Consideration of rules of type (2), which have been briefly
discussed in earlier papers (Larkin [4-6]), is prompted by the fact that non
negativity is an inherent property of many functions encountered in the
experimental sciences (e.g., mass, heat, or probability densities). Clearly,
the construction of rules of type (2) is one way of making use of the extra,
global information of nonnegativity of the subject function in a linear
estimation problem.
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The error functional E in a type (1) rule is defined by

361

m

Ef = Lf - L Wk!(Xk);
k~l

\:IfEF.

Suppose s(·) is a seminorm or norm on F, with respect to which E is a
bounded, linear functional, i.e.,

I Erl def
sup -"- = II Ell < 00,

O#EF s(f)

then II E II is a function of the m weights {Wk}' If these weights are chosen so
that

(i) s(f) = 0 => Ef = 0,

(ii) II E II is minimized with respect to the remaining degrees of freedom
in the {w k } then they are said to be "optimal" with respect to s('), and rule
(1) is said to be an "optimal, linear estimation rule." A rule which is optimal
with respect to the norm in a space will be called "norm-optimal," to dis
tinguish this from optimality with respect to a seminorm. In particular,
let F be H n , the Hilbert space of real functions on the interval [0, 1] having
absolutely continuous (n - I )th order derivative, with inner product defined
by

n-1 1

(f, g) = L CI.;/(j)(O) g(j)(O) + Jpn)(x) g(nl(x) dx;
j~O 0

where the {Cl.j;j = 0, 1,2,... , n - I} are positive, real parameters. We
presume that 1 ~ n < m. In this space E has a Riesz representer e('), say.
A rule of type (1) which is exact for all polynomials of degree less than n,
and minimizes the seminorm

'J1 )1/2s(e) =} I e<n)(x)12 dx(
I 0 \

with respect to the remaining degrees of freedom in the {Wk}, is said to be
"best in the sense of Sard" (Sard [8]). Clearly such a rule is optimal.

It is well known (e.g., Handscomb [3]) that if (1) is "best" in the sense of
Sard, then

m

L wk!(xk) = LJ;
k~l
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where Jo is the natural, polynominal spline of order 2n - 1 based on the
knots {(x lc ,f(x1J); k = 1,2,... , m} (Ahlberg et al. [1]). Thus, optimal esti
mation of the value of a bounded, linear functional, from a set of given
ordinate values, may be achieved by constructing an appropriate, natural,
polynominal spline and applying the required functional to it. Furthermore,
(1) is "best" in the sense of Sard if and only if it is exact for all natural,
polynomial splines of degree 2n - I with {xk ; k = 1,2, ... , m} as their
knot abscissas.

The main result of this paper is that, on extending the concept of optimality
in an intuitively reasonable way, so as to include estimation rules of type (2),
it turns out that for the spaces {Hn , n = 1,2, 3, ...} limiting forms of the
optimal type (2) rules are identical with those of type (1), i.e., are "best"
in the sense of Sardo To arrive at this result we

(a) Show how "best" linear estimation rules arise as limiting forms of
rules which are optimal with respect to the norm in H n , by exhibiting a
characterizing basis of functions for which such rules are exact.

(b) Note that norm-optimal type (1) rules in a Hilbert space can be
derived by minimizing the mean-square error over the space (integration
being performed relative to a weak Gaussian distribution) with respect to
the weights {WI,} We then define optimality of a type (2) rule in terms of
minimizing its mean-square error over the space.

(c) Exhibit a characterizing basis of functions for which a norm
optimal type (2) rule is exact and show that its limiting form is identical with
the corresponding basis for a type (1) rule.

2. CHARACTERIZATION OF "BEST" LINEAR RULES

In an earlier paper (Larkin [5]) a more general form of the following result
was proved:

THEOREM I. If KnL .) is the reproducing kernel function for Hn and the
distinct abscissa {x k ; k = 1,2,... , m} all lie in [0,1], then the norm-optimal
estimation rule of type (1) is characterized by the fact that it treats the functions
{Kn(Xk' .); k = 1,2,... , m} exactly,jor any bounded linear functional Lon Hn .

We now construct Kn(x, y).
Let

In(X, y) = (y - x)n-l/(n - I)!;

= 0;

o :( x :( y,

o :( y :( x,
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and define Kn(x, y) to be the nth iterated integral with respect to x, from °
as the lower limit, of Jix, y). It may then be verified that

def n-l (xy)j _
Kn(x, y) = I -----:--(")2 + Kn(x, y);

j=O CX} J.
Vx, yEO [0, 1],

regarded as a function of either variable with the other fixed, is the repro
ducing kernel function for H n (Aronszajn [2]). Thus

K n(', y) EO H n ;

Kn(x, y) = Kiy, x);

and

Vy EO [0, 1],

Vx, Y EO [0, 1],

(h('), K n(', y)) = hey); Vy EO [0, 1].

For example

Ix;
Iy;

o ~ x ~ y,°~ y ~x,

l-x3/3! + x 2y/2!;
K2(x,y) = l/cxo + xy/cxl + /-y3/3! + y2x /2!;

K3(x, y) = l/cxo + xy/cxl + (xy)2/4cx2

+ \x5/5! - x 4y/4! + X3y 2/3! 2!;
l y 5/5! - y4x /4! + y3x /3! 2!;

etc.

o ~ x ~y,

o~ y ~ x,

o ~ x ~ y,
o ~ y ~ x,

Now let Kn[xsxS+l •.• xs+n , y] denote the nth divided difference formed
from {(xk , Kn(Xk, y)); k = s, s + 1,... , s + n}, and similarly for
Kn[xsxS+l ... Xs+n , y].

THEOREM 2. In the limit as the parameters {CXj;j = 0, 1,2,... , n - I}
sequentially approach 0 from above, the norm-optimal type (1) estimation rule
becomes exact for the m functions of y {yr; r = 0, 1, 2, ... , n - l} and
{K[xSxS+l ••• Xs+n , Y]; s = 1,2,... , m - n}

Proof Form a divided difference table (whose entries will be functions
of y) from the table {(Xk, Kn(Xk' y)); k = 1,2,... , m}. From Theorem 1
it is clear that if (1) is norm-optimal it is exact for every function in the divided
difference table. Notice that, because of the polynomial nature of the function
Kn(x, y) - Kix, y) the column of first differences contains no term in
l/cxo, the column of second differences contains no term in l/cxo or y/CXl'
and so on until the column of nth differences is quite independent of the {CXj}.

As (~o '" °the initial column of functions becomes dominated by the term
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1/000' so the limiting form of the norm-optimal rule will be exact for constants.
As 001 '4 °the column of first differences becomes dominated by the term
y/oo l so the limiting rule will be exact for linear functions. Similarly, as
002 , 003 , ... , OOn - l sequentially approach °from above the limiting form of
the norm-optimal rule will be exact for all polynomials of degree <n, as
well as for the functions of y

s = 1,2,... , m - n,

as required.

COROLLARY. in the limit as the parameters {oo;;j = 0, 1,2,... , n - I}
approach °from above, a norm-optimal type (1) rule becomes "best" in the
sense of Sardo

Proof Notice that for °,,( y c:;; Xl and X m c:;; Y the functions
{1{n[x,xs+1..•xs+ n , y]; S = 1,2,... , m - n} are polynomials in y of degree
<no Hence these functions, together with {xr; r = 0, 1,2,... , n - I} comprise
a Chebyshev set of natural, polynomial splines of order 2n - 1 whose knot
abscissas are located at {x" ; k = 1,2,... , m}. Thus, since the unique, natural.
polynomial spline of order 2n - 1 with knots at {(x" ,lex,,)); k = 1,2,... , m}
can be expanded as a linear combination of these basis functions, for any
set of finite ordinate values {l(x,,); k = 1,2,... , m}, the limiting form of the
norm-optimal type (1) rule must be exact for this class of function, so the
required result is proved.

3. ESTIMATION RULES WITH MINIMUM MEAN-SQUARE ERROR

In another paper (Larkin [6]) the idea was introduced of constructing an
estimation rule by minimizing the value of its squared error, averaged with
respect to a weak Gaussian distribution over a Hilbert space H. In particular,
it was shown that choosing the weights {w" ; k = 1,2,... , m} to minimize
the mean-square error

fLO denoting the weak Guassian distribution on H, leads to a norm
optimal, linear estimation rule of type (1). Furthermore, the weights
{v" ; k = 1,2,... , m} which minimize the mean-square error
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satisfy the simultaneous, linear equations Cv = d, where

365

j, k = 1,2,... , m,

and

j = 1,2,... , m.

These functional integrals can be evaluated explicitly in terms of the
reproducing kernel function K(x, y) for H, and are proportional to
K(xj , Xj) K(xk , Xk) + 2K2(Xj ,xk) and Lx{K(xj, Xj) K(x, x) + 2K2(Xj , x)},
respectively, the suffix on L indicating the independent variable through
which it operates.

Thus, the weights {Vk ; k = 1,2,... , m} arising from this extended optimality
principle satisfy the equations

m

L vk{K(xj, Xj) K(Xk , Xk) + 2K2(Xj , Xk)}
k~l

= Lx{K(Xj, Xj) K(x, x) + 2K2(Xj, x)}; j = 1,2,... , m,

which is to say that the optimal type (2) rule is exact for the functions of x
{K(xj, Xj) K(x, x) + 2K2(Xj, x);j = 1,2,... , m}.

Using L1 to denote the familiar finite difference operator, we are now in a
position to prove the following:

THEOREM 3. rr K(x, y) = l/ex + K(x, y), where K(x, y) is independent
of ex, in the limit as ex \,. 0 the optimal type (2) rule will be exact for constants,
and the functions {L1K(xj, .);} = 1,2,.. " m - I}.

Proof The optimal type (2) rule is exact for the functions of x

Slx) = 3/ex2 + 1/ex{K(xj, Xj) + K(x, x) + 4K(xj , x)}

+ K(xj, xJ K(x, x) + 2K2(Xj, x); } = 1,2,... , m,

and any linear combination of them. As ex \,. 0 the {Sk)} are dominated by
the term in 3/ex2, so the limiting form of the rule is exact for constants.

However, the rule is also exact for the functions of x

(llex) L1{K(xj , Xj) + 4K(xj , x)} + L1{K(xj , Xj) K(x, x) + 2K2(Xj, x)};

j = 1,2,... , m - 1,

and the {L1K(xj , Xj);} = 1,2,... , m - I} are constants, so its limiting form
must also be exact for the functions {L1K(xj, ');j = 1,2,..., m - I}, as
required.
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COROLLARY. When H is H n , in the limit as the parameters
{CXj ; j = 0, I, 2, ... , n - I} sequentially approach °from above the optimal
type (2) rule becomes identical with the type (1) rule which is "best" in the
sense of Sardo That is

k = 1, 2, ... , m.

Proof To verify exactness for constants we merely identify CXo with the
cx in Theorem 3. The rest of the proof follows the technique of
Theorem 2-forming higher-order divided differences of the quantities
{L1Kn(xj , ')!(Xi+l - Xj); j = 1, 2, ... , m - l} and sequentially permitting
the parameters {CXj;j = 1,2,... , n - 1} to approach °from above.

4. CONCLUSIONS

We have shown how type (1) linear estimation rules which are "best" in
the sense of Sard may be regarded as limiting forms of norm-optimal rules
in a certain Hilbert space, and have noted that norm-optimality is obtained
by minimizing the squared error of the rule, averaged with respect to a weak
Gaussian distribution on the space. The analog of a norm-optimal rule was
constructed for the type (2) problem, and it was shown that the limiting
form of this rule is also "best" in the sense of Sard for the type (1) problem.

Thus, it appears that if operating on the natural, polynomial spline is
appropriate for estimation of the value of a bounded, linear functional in a
type (I) problem, it is also appropriate in the related type (2) problem. In
other words, it is reasonable simply to ignore the positivity constraint.
Unfortunately, this does not dispose of the objection that a natural, poly
nomial spline interpolated through the knots {(x lc , h2(xlc)); k = 1,2,... , m}
may cross the x-axis. One can only conclude that the requirement of positivity
of an interpolating function j, from which an estimate of Lfis to be computed,
may be incompatible with the requirement for minimum mean-square
error over H n •
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